• rencontre monein

    rencontres expats bruxelles marche.fr rencontres adultes mardi 23 mai 2017

  • hotel des rencontres severes pdf

    rencontre camille claudel rodin du je rencontre mec 12 décembre 2016 au petite annonce rencontres gratuite 13 décembre 2016

  • meet montceau les mines

    sites rencontre musulmans du rencontre coulommiers gratuit 6 juillet 2016 au site de rencontre balou 8 juillet 2016

  • site de rencontre look

    rencontres tourisme brive la gaillarde prostituees suisse mercredi 15 juin 2016

  • rencontre frasnes lez anvaing

    rencontre du non linéaire pourquoi les hommes mariés vont sur des sites de rencontres vendredi 25 mars 2016


rencontres merindol septembre 2017 :

comparatif site rencontre payant Rien pour ce mois

rencontres de la géographie et de la sociologie rencontre extraterrestre video | chat land rencontres ado

petites annonces gratuites pour rencontres New Theoretical Frameworks in Metric Learning : Application to Energy Management

rencontre nyon suisse comment robinson rencontre vendredi > le cadre bucolique de la rencontre > rencontre serieuse belge

Doctorant : Nicolae Maria-irina

  • Directeur : Sebban Marc

cette rencontre qui ont changé leur vie This proposal is a fundamental research project whose main goal is to provide new theoretical frameworks and algorithms for automatically learning metrics from data. Based on the saying “Birds of a feather flock together”, metrics play a crucial role in a large set of learning methods, such as the widely used k-nearest neighbors, kernel-based methods in classification or the k-Means algorithm in clustering.
Since manually tuning metrics for a given real-world problem is often difficult and tedious, our objective is to automatically acquire knowledge from training data to optimize good metrics. This requires to formally define the notion of goodness that would allow us to ensure theoretical guarantees (i) on the generalization ability of the metric (i.e. do the properties optimized over the training set still hold on new data ?) and (ii)on the generalization capability of a classifier using that metric (i.e. can we derive upper bounds on the generalization error of the classifier ?). The metric learning algorithms developed in this project will be used to deal with an application in energy management in collaboration with Schneider Electric.